UNIVERSITY OF CALGARY

FACULTY OF SCIENCE

FINAL EXAMINATION

CHEMISTRY 351

December 16th 2024

Time: 2 Hours

Version

READ ALL THE INSTRUCTIONS CAREFULLY

WRITE YOUR NAME, STUDENT I.D. NUMBER AND VERSION NUMBER 1 ON <u>BOTH</u> YOUR MULTIPLE CHOICE ANSWER SHEET AND WRITTEN ANSWER SHEET.

The exam consists of **Parts 1 - 8**, each of which should be attempted. Some Parts provide you with a choice of questions, *e.g.* answer any 5 out of 6. These will be graded in numerical order until the required number have been completed, regardless of whether they are right or wrong. **Parts 1 - 5** are to be answered on the multiple choice answer sheet, and **Parts 6 - 8** are to be answered **IN THE APPROPRIATE BOX ON THE WRITTEN ANSWER SHEET PROVIDED**.

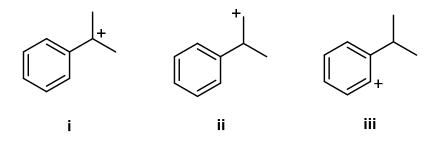
Parts 1 - 5 consist of a series of multiple choice questions numbered **1 - 34** to be answered on the multiple choice answer sheet. Indicate your answer by completely blackening out the appropriate space, A, B, C, D or E on the answer sheet for that specific question. Use a soft pencil only, <u>not ink</u>. In some cases it is required that you indicate <u>multiple</u> items for a complete and/or correct answer by blackening out <u>more than one space</u>. In some other cases, more than five options are available and some of these also require more than one space to be blackened out. For an example, an option specified as AB requires that you blacken out <u>both</u> space A and space B. Part marks may be awarded in some of the questions. Incorrect answers must be <u>erased cleanly</u>.

A periodic table with atomic numbers and atomic weights and spectroscopic data tables and 2 pages of scrap paper for rough work are included with this examination paper.

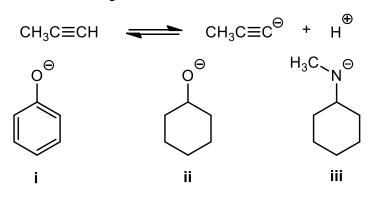
Molecular models are permitted during the exam; calculators are also permitted, <u>but NOT</u> <u>programmable calculators</u>. Absolutely no other electronic devices are allowed.

14% PART 1: RELATIVE PROPERTIES

ANSWER ANY SEVEN (7) OF QUESTIONS 1 TO 8 (2 points each).


Arrange the items in questions 1-8 in DECREASING ORDER (i.e. greatest, most etc. first) with respect to the indicated property

Use the following code to indicate your answers.


- A.
 i > ii > iii
 D.
 ii > iii > i

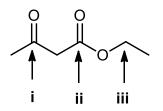
 B.
 i > iii > ii
 E.
 iii > i > ii

 C.
 ii > i > iii
 AB.
 iii > ii > i
- 1. The relative stability of the following carbocations :

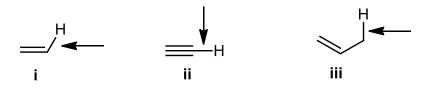
2. The relative amount of the conjugate base of propyne formed by the reaction of 1 mole equivalent of each of the following:

3. The relative nucleophilicity of the following in a polar aprotic solvent:

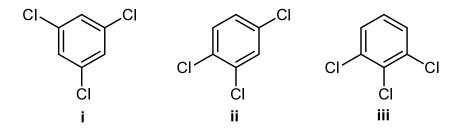
 $\begin{array}{ccc} \mathsf{CH}_3\mathsf{CH}_2\mathsf{ONa} & \mathsf{CH}_3\mathsf{CH}_2\mathsf{SNa} & \mathsf{CH}_3\mathsf{CH}_2\mathsf{NH}_2\\ \mathbf{i} & \mathbf{ii} & \mathbf{iii} \end{array}$

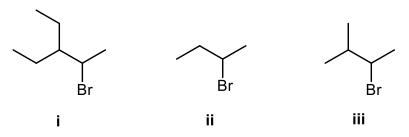

4. The relative rate of reaction when each of the following was heated with H₂SO₄:

i. 1-phenylethan-1-ol	ii. phenol	iii. 2-phenylethan-1-ol
-----------------------	------------	-------------------------

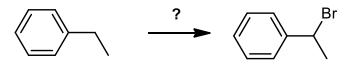

Use the following code to indicate your answers.

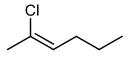
Α.	i > ii > iii	D.	ii > iii > i
Β.	i > iii > ii	Ε.	iii > i > ii
C .	ii > i > iii	AB.	iii > ii > i


5. The relative ¹³C-NMR chemical shifts for the carbon atoms indicated by arrows in the following structure:

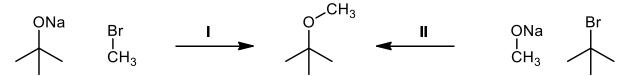

6. The relative IR spectra frequencies of the stretching vibrations of the C-H bonds indicated by arrows in the following structures:

7. The number of types of aromatic carbon in each of the following:


8. The relative yield of the anti-Zaitsev product formed when sodium ethoxide is heated with each of the following:

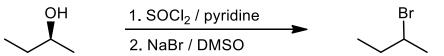

15% PART 2: MOLECULAR PROPERTIES

ANSWER ALL SIX (6) OF THE QUESTIONS 9 TO 14 (2.5 points each). In questions 9-13 choose the <u>single</u> option that provides the <u>best</u> answer.

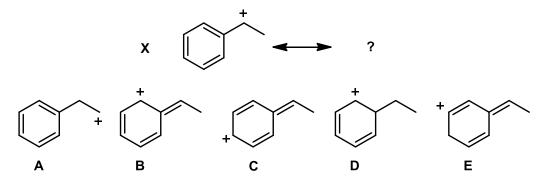

9. In the following reaction, what is the most appropriate reagent and condition:

- A. Br₂ / heat is required because the reaction is a radical bromination
- B. NaBr / uv is required because the reaction is a radical bromination
- **C.** NaBr is required because the reaction is an $S_N 2$.
- **D.** HBr is required because the reaction is an $S_N 1$.
- **E.** PBr_3 / Et_3N is required because the reaction is an S_N1 .
- 10. Which of the following statements about the Cahn-Ingold-Prelog priority rules applies for assigning stereochemistry for the molecule shown?

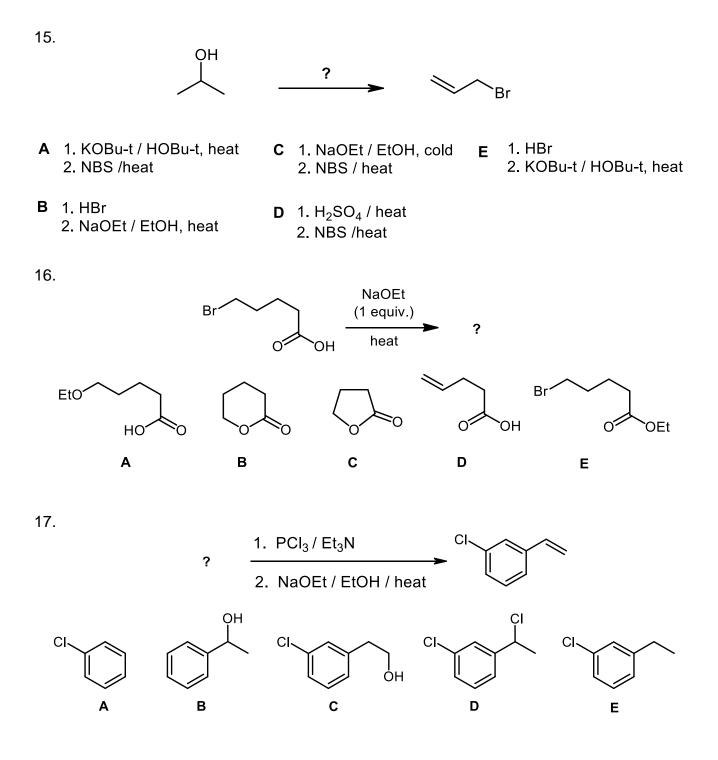
- A. The molecule is *E* because the two alkyl groups on the alkene are *trans*.
- **B.** The molecule is *Z* because the two alkyl groups on the alkene are *cis*.
- **C.** E/Z does not apply because there is a halogen attached to the alkene.
- **D.** The molecule is *E* because the priority groups on the alkene are opposite.
- **E.** The molecule is *Z* because the priority groups on the alkene are together.
- 11. Which synthetic strategy is the more efficient way to form tert-butyl methyl ether?

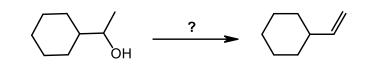


- **A.** I because tert-butoxide is a stronger base than methoxide.
- **B.** II because tert-butyl bromide forms a stable tertiary cation.
- C. I because there is less competition with elimination.
- D. II because the reaction is an SN1
- E. I and II are equally efficient ways to form tert-butyl methyl ether


12. In the ¹H-NMR spectra, which **one** of the following choices best explains the relative **chemical shifts** of the **H atoms shown** ?

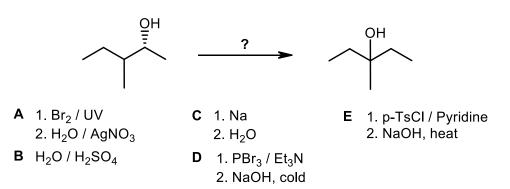
- A. I is higher than II, due to inductive effects at the sp hybridised C in the C-H bond.
- **B.** II is higher than I, due to inductive effects at the sp hybridised C in the C-H bond
- C. II is higher than I, as the hydrogen in II is inside the deshielding cone
- D. I is higher than II, because of the extra resonance of the two pi bonds
- E. There is minimal difference in chemical shift because both H are attached to C atoms
- 13. For the reaction sequence shown below, where the stereochemistry of the product is not shown, the **product stereochemistry should be:**


- A. Racemic due to the formation of a carbocation in step one
- **B.** Racemic due to the formation of a carbocation in step tw.
- C. Inverted due to the first step being an SN2 reaction
- **D.** Preserved due to inversions happening in both of the reactions
- E. Inverted due to the second step being an SN2 reaction
- 14. Which of the following is/are resonance structures of the structure **X** ? (**select all that apply**)

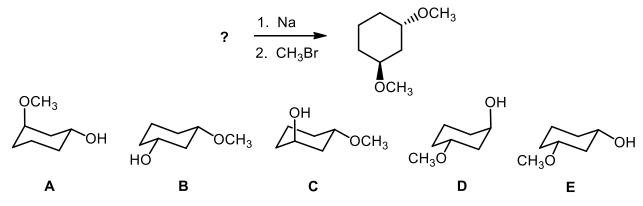

10% PART 3: REACTIONS

ANSWER ANY FIVE (5) of questions 15-20 (2 marks per question)

For each of questions 15-20, selecting the MISSING component (the best starting material, the major product, or the best reagents) required to BEST complete the reaction schemes.



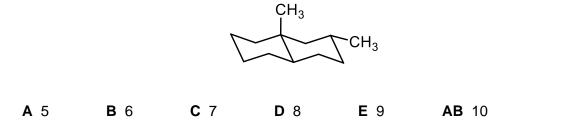
18.



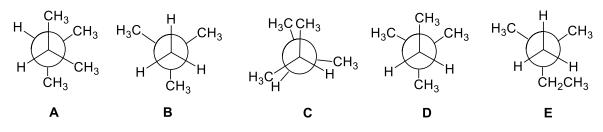
- A 1. HBr 2. KOBu-t / t- BuOH / heat
- B KOBu-t / t-BuOH / heat
- C 1. PBr₃ / NEt₃
 E Conc. H₂SO₄ / heat
 2. KOBu-t / HOBu-t / heat
- D 1. SOCl₂ / NEt₃ 2. KOH / EtOH / heat

19.

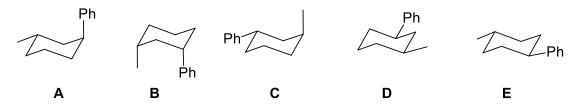
20.

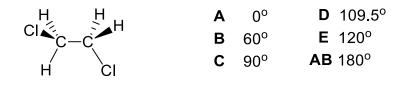


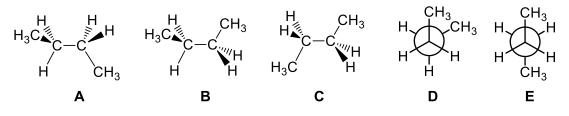
14% PART 4: CONFORMATIONAL ANALYSIS


ANSWER ANY SEVEN (7) OF THE QUESTIONS 21 TO 28 (2 points each).

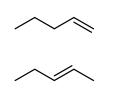
For each of the questions 21-28 select the answer(s) from those provided. In some cases more than one answer may be correct in which case all correct answers should be selected for full marks.


21. How many equatorial hydrogens are there in the structure shown?


22. Which of the Newman projections shown is a conformation of 2,2-dimethylbutane? (select <u>all that apply)</u>


23. Which of the following structures represents the lowest energy conformations of *trans*-1methyl-3-phenylcyclohexane ?

24. What is the **torsional angle** between the **two C-CI bonds** in the conformation of 1,2dichloroethane shown below?

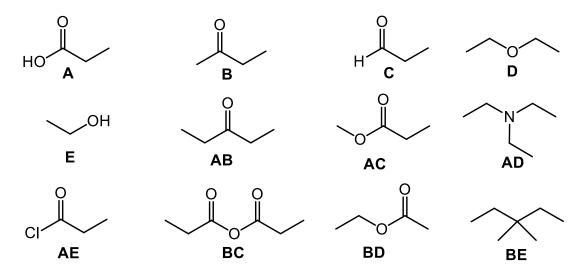


25. Which of the following molecules has the **least strain** in the conformation shown ? (select all that apply)

- 26. Which of the following structures have two equally stable chair conformations ? (select all that apply)
 - A *cis*-1,2-dimethylcyclohexane
 - **C** *cis*-1,3-dimethylcyclohexane
 - E methylcyclohexane

- B trans-1,2-dimethylcyclohexane
- D trans-1,3-dimethylcyclohexane
- 27. Which of the following terms **best** describes the relationship between the two molecules shown below ?

- A configurational isomers
- **B** conformational isomers
- C enantiomers
- **D** diastereomers
- E regioisomers
- AC stereoisomers
- 28. What is the **bond** angle of the **C-N-C bonds between the two methyl groups** in the most stable conformation of the structure shown below ?

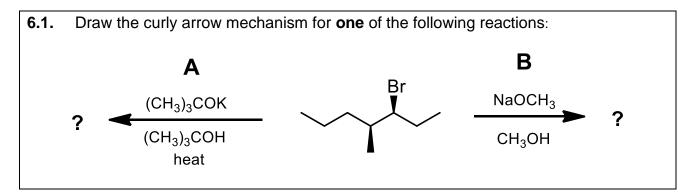

Α	0 ⁰	D 109.5°
В	60 ⁰	E 120°
С	90 ⁰	AB 180 ^o

12% PART 5: SPECTROSCOPY

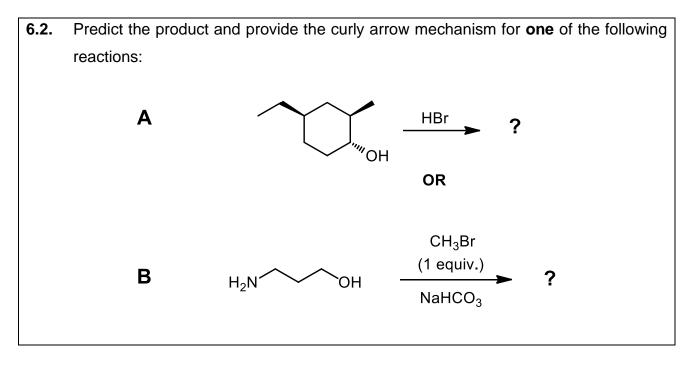
ANSWER ALL SIX (6) OF QUESTIONS 29 TO 34 (2 points each).

For each of questions 29-34 select the compound from the list provided that corresponds BEST with the spectroscopic data provided. The following common abbreviations have been used s = singlet, d = doublet, t = triplet, q = quartet, p = pentet, m = multiplet *etc.*.

- ¹H NMR : δ/ppm 1.1 (t, 3H), 2.1 (s, 3H), 2.5 (q, 2H)
 ¹³C-NMR: δ/ppm 8, 29, 37, 209
 IR : 1718 cm⁻¹
- 30. ¹H NMR : δ/ppm 1.0 (t, 3H), 2.4 (q, 2H)
 ¹³C-NMR: δ/ppm 12, 46
 IR : 2974 cm⁻¹
- ¹H NMR : δ/ppm 0.7 (t, 3H), 0.8 (s, 3H), 1.2 (q, 2H)
 ¹³C-NMR: δ/ppm 8, 26, 33, 34
 IR : 2964 cm⁻¹
- ¹H NMR : δ/ppm 1.2 (t, 3H), 2.9 (q, 2H)
 ¹³C-NMR: δ/ppm 10, 41, 175
 IR : 1792 cm⁻¹
- ¹H NMR : δ/ppm 1.1 (t, 3H), 2.4 (q, 2H), 11.7 (s, 1H, D₂O exchange)
 ¹³C-NMR: δ/ppm 9, 27, 181
 IR : 3600-3000 cm⁻¹ (very broad), 1716 cm⁻¹.
- 34. ¹H-NMR: δ/ppm 1.2 (t, 3H), 2.6 (s, 1H, D₂O exchange), 3.7 (q, 2H)
 ¹³C-NMR: δ/ppm 18, 58
 IR : 3400-3200 cm⁻¹ (broad)



12% PART 6: MECHANISMS


WRITE YOUR ANSWER IN THE APPROPRIATE BOX ON THE WRITTEN ANSWER SHEET PROVIDED.

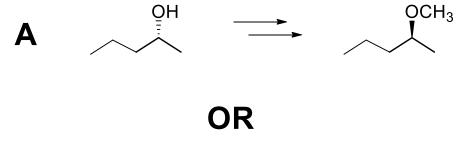
ANSWER TWO (2) QUESTIONS, ONE FROM EACH OF PART 6.1 and 6.2.

Draw curly arrow mechanisms to explain the following reactions / observations. No other reagents are required.

AND

10% PART 7: SYNTHESIS

WRITE YOUR ANSWER IN THE APPROPRIATE BOX ON THE WRITTEN ANSWER SHEET PROVIDED

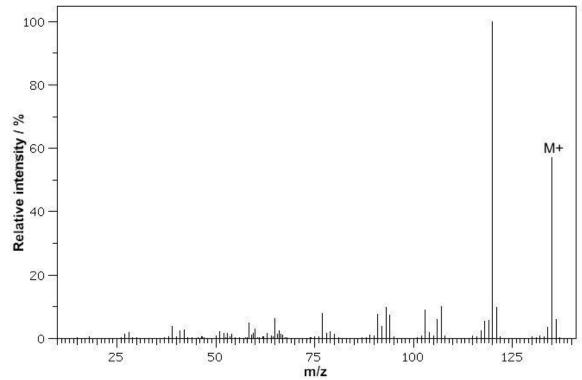

DESIGN AN EFFICIENT SYNTHESES OF <u>ONE</u> of the following target molecules from the indicated starting material.

In addition, you are allowed to use <u>any hydrocarbon with three or fewer carbon atoms</u>, any solvents or inorganic reagents, and any organic reagents that do not contribute carbon atoms to the <u>carbon</u> skeleton in the <u>product</u>.

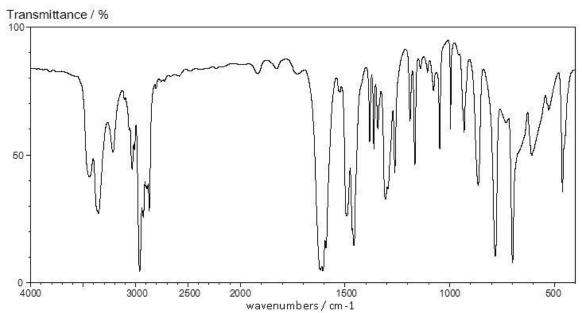
More than one step will be required for each synthesis.

SHOW YOUR ANSWER AS A STEPWISE REACTION SCHEME SHOWING THE REAGENT REQUIRED AND PRODUCT OF EACH STEP.

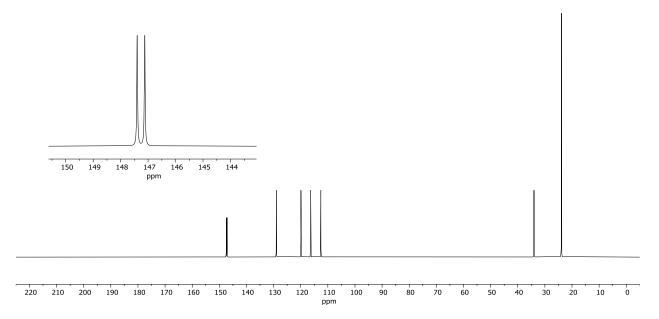
DO NOT SHOW MECHANISMS (i.e. curly arrows are NOT required)

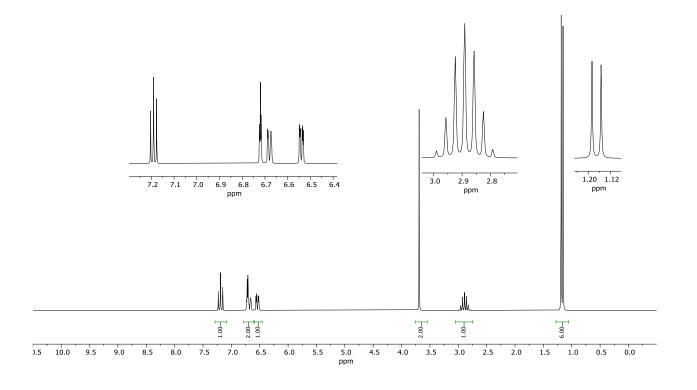


13% PART 8: SPECTROSCOPY


WRITE YOUR ANSWER IN THE APPROPRIATE BOX ON THE WRITTEN ANSWER SHEET PROVIDED Show your workings as PARTIAL marks will be given.

From the spectral data provided below, identify the structure of the "unknown" molecule.





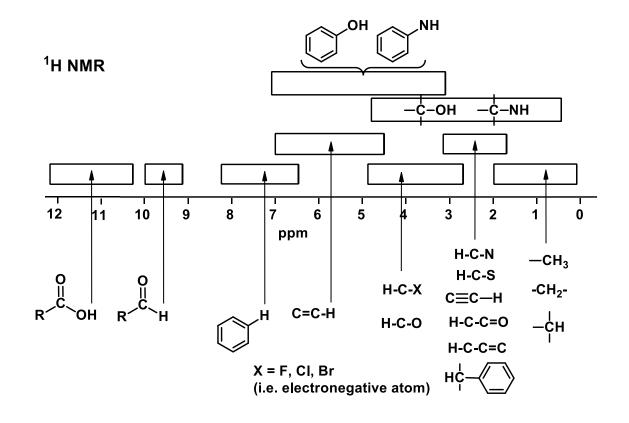
Cont'd -->

¹³C-NMR:

¹H-NMR:

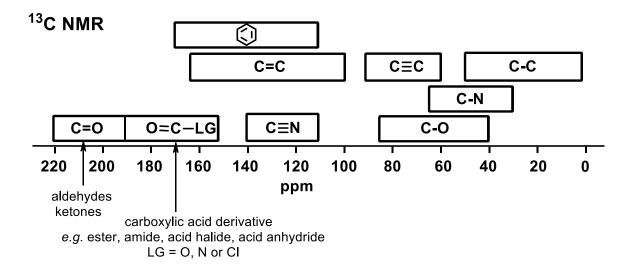
**** THE END ****

IRH /CCL 2024

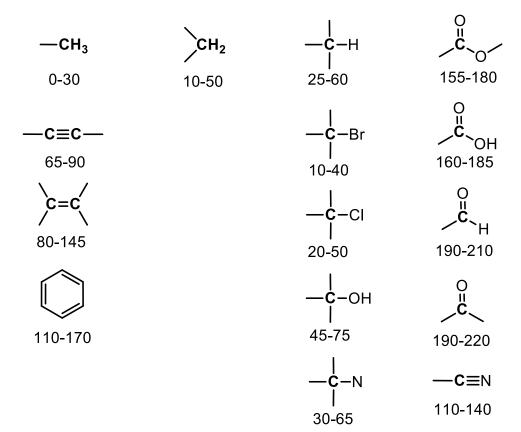

SCRAP PAPER

Remember ALL final answers need to be entered in appropriate box on the answer sheet

SCRAP PAPER


Remember ALL final answers need to be entered in appropriate box on the answer sheet

SPECTROSCOPIC TABLES



¹H NMR CHARACTERISTIC CHEMICAL SHIFTS / ppm

R =	methyl	methylene	methyne		
	$-CH_3$	-CH ₂ -	–ċн	other	
R-C-	0.9	1.4	1.5	sp ³ C -OH	1-5
R /				sp ³ C -NH	1-3
)c=c(1.6	2.3	2.6	С≡сн	2.5
R ^O	2.1	2.4	2.5)c=c_	4.5-6.5
R-N	2.2	2.5	2.9	H	6.5-8
R	2.3	2.7	3.0	0 " R ^{/C} \H	9-10
R–Br	2.7	3.3	4.1	0 0	
R–CI	3.1	3.4	4.1	_К ∕ ^с ∕он	9-12
R-0—	3.3	3.4	3.7		

¹³C NMR CHARACTERISTIC CHEMICAL SHIFTS / ppm

INFRA-RED GROUP ABSORPTION FREQUENCIES

	Ţ	YPE OF VIBRATION	FREQUENCY (cm ⁻¹)	<u>WAVELENGTH</u> (µ)	INTENSITY (1)
C–H	Alkanes	(stretch)	3000-2850	3.33-3.51	S
	–CH ₃	(bend)	1450 and 1375	6.90 and 7.27	m
	CH ₂	(bend)	1465	6.83	m
	– Alkenes	(stretch)	3100-3000	3.23-3.33	m
		(bend)	1700-1000	5.88-10.0	S
	Aromatics	(stretch)	3150-3050	3.17-3.28	S
		(out-of-plane bend)	1000-700	10.0-14.3	S
	Alkyne	(stretch)	ca. 3300	ca.3.03	S
	Aldehyde		2900-2800	3.45-3.57	w
	-		2800-2700	3.57-3.70	w
C–C	Alkane	not usually useful			
C=C	Alkene		1680-1600	5.95-6.25	m-w
	Aromatic		1600-1400	6.25-7.14	m-w
C≡C	Alkyne		2250-2100	4.44-4.76	m-w
C=O	Aldehyde		1740-1720	5.75-5.81	S
	Ketone		1725-1705	5.80-5.87	S
	Carboxylic aci	d	1725-1700	5.80-5.88	S
	Ester		1750-1730	5.71-5.78	S
	Amide		1700-1640	5.88-6.10	S
	Anhydride		ca. 1810	ca. 5.52	S
			ca. 1760	ca. 5.68	S
	Acyl chloride		1800	5.55	S
C-0	Alcohols, Ethe	ers, Esters,			
	Carboxylic aci	ds	1300-1000	7.69-10.0	S
O–H	Alcohols, Pher	nols			
	Free		3650-3600	2.74-2.78	m
	H-Bonde	d	3400-3200	2.94-3.12	m
	Carboxylic aci	ds (2)	3300-2500	3.03-4.00	m
N–H	Primary and se	econdary amines	3500-3100	ca. 2.86	m
C≡N	Nitriles		2260-2240	4.42-4.46	m
N=O	Nitro (R–NO ₂))	1600-1500	6.25-6.67	S
			1400-1300	7.14-7.69	S
C–X	Fluoride		1400-1000	7.14-10.0	S
	Chloride		800-600	12.5-16.7	S
	Bromide, Iodic	le	<600	>16.7	S

(1) s = strong, m = medium and w = weak

(2) note that the -OH absorption of solid carboxylic acids which run as a nujol mull can be difficult to see as they maybe very broad

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							-			• • •								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1																	18
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1A	_																8A
1.008 2A 3A 4A 5A 6A 7A 4.003 3 4 Li Be 5 6 7 8 9 10 10 Be 9.012 5 6 7 8 9 10 11 12 Na Mg 3 4 5 6 7 8 9 10 11 12 Na Mg 3 4 5 6 7 8 9 10 20.18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr 39.10 40.08 44.96 47.88 50.94 52.00 54.94 55.85 58.93 58.69 63.35 65.38 69.72 72.99 78.96 <td< th=""><th></th><th>2</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>13</th><th>14</th><th>15</th><th>16</th><th>17</th><th></th></td<>		2											13	14	15	16	17	
Li Be C N O F Ne 6.941 9.012 11 12 14.01 16.00 19.00 20.18 Na Mg 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Na Mg 2.2.9 24.31 2.2.9 24.31 7 8 9 10 11 12 Al Si P S C1 Ar 39.10 40.08 44.96 47.88 50.94 52.00 54.94 55.85 58.93 58.69 63.55 65.38 69.72 72.59 74.92 78.96 79.90 83.80 37 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54.94 37 38 39 40 <t< th=""><th></th><th>2A</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>3A</th><th>4A</th><th>5A</th><th>6A</th><th>7A</th><th></th></t<>		2A											3A	4A	5A	6A	7A	
6.941 9.012 11 12 Na Mg 3 4 5 6 7 8 9 10 11 12 Al Si P S CI Ar 22.99 24.31 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36.9 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36.9 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr 39.10 40.08 44.96 47.88 50.94 52.00 54.94 55.85 58.93 58.69 65.35 65.38 69.72 72.59 74.92 78.96 79.90 83.80 36 37 38 39 40 41 42 43 <th>3</th> <th>4</th> <th></th> <th>5</th> <th>6</th> <th>7</th> <th>8</th> <th>9</th> <th>10</th>	3	4											5	6	7	8	9	10
11 12 Na Mg 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 22.99 24.31 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr 39.10 40.08 44.96 47.88 50.94 52.00 54.94 55.85 58.93 58.69 63.55 65.38 69.72 72.59 74.92 78.96 79.90 83.80 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54.93 37 38 39 40 41 42 43 44 45 46 47	Li	Be											В	С	Ν	0	F	Ne
Na Mg 3 4 5 6 7 8 9 10 11 12 Ai Si P S C1 Air 22.99 24.31 - - - - - - - 26.98 28.09 30.97 32.07 35.45 39.95 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr 39.10 40.08 44.96 47.88 50.94 52.00 54.94 55.85 58.93 58.69 63.55 65.38 69.72 72.59 74.92 78.96 79.90 83.80 37 38 39 40 41 42 43	6.941	9.012											10.81	12.01	14.01	16.00	19.00	20.18
22.99 24.31 26.98 28.09 30.97 32.07 35.45 39.95 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr 39.10 40.08 44.96 47.88 50.94 52.00 54.94 55.85 58.93 58.69 63.55 65.38 69.72 72.59 74.92 78.96 79.90 83.80 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe 85.47 87.62 88.91	11	12											13	14	15	16	17	18
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr 39.10 40.08 44.96 47.88 50.94 52.00 54.94 55.85 58.93 58.69 63.55 65.38 69.72 72.59 74.92 78.96 79.90 83.80 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe 85.47 87.62 88.91 91.22 92.91 95.94 (98) 101.1 102.9 106.4 107.9 112.4 <th< th=""><th>Na</th><th>Mg</th><th>3</th><th>4</th><th>5</th><th>6</th><th>7</th><th>8</th><th>9</th><th>10</th><th>11</th><th>12</th><th>Al</th><th>Si</th><th>Р</th><th>S</th><th>Cl</th><th>Ar</th></th<>	Na	Mg	3	4	5	6	7	8	9	10	11	12	Al	Si	Р	S	Cl	Ar
K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr 39.10 40.08 44.96 47.88 50.94 52.00 54.94 55.85 58.93 58.69 63.55 65.38 69.72 72.59 74.92 78.96 79.90 83.80 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe 85.47 87.62 88.91 91.22 92.91 95.94 (98) 101.1 102.9 106.4 107.9 112.4 114.8 118.7 121.8 127.6 126.9 131.3 35 55 56 </th <th>_</th> <th></th>	_																	
39.10 40.08 44.96 47.88 50.94 52.00 54.94 55.85 58.93 58.69 63.55 65.38 69.72 72.59 74.92 78.96 79.90 83.80 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe 85.47 87.62 88.91 91.22 92.91 95.94 (98) 101.1 102.9 106.4 107.9 112.4 114.8 118.7 121.8 127.6 126.9 131.3 55 56 57* 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 Cs Ba La Hf Ta W Re Os Ir Pt Au		20	21			24	25	26	27		29	30	31	32	33	_	35	
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe 85.47 87.62 88.91 91.22 92.91 95.94 (98) 101.1 102.9 106.4 107.9 112.4 114.8 118.7 121.8 127.6 126.9 131.3 55 56 57* 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn 132.9 137.3 138.9 178.5 180.9 183.9 186.2 190.2 192.2 195.1 197.0 200.6 <	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe 85.47 87.62 88.91 91.22 92.91 95.94 (98) 101.1 102.9 106.4 107.9 112.4 114.8 118.7 121.8 127.6 126.9 131.3 55 56 57* 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn 132.9 137.3 138.9 178.5 180.9 183.9 186.2 190.2 192.2 195.1 197.0 200.6 204.4 207.2 209.0 (209) (210) (222) 87 <																		
85.47 87.62 88.91 91.22 92.91 95.94 (98) 101.1 102.9 106.4 107.9 112.4 114.8 118.7 121.8 127.6 126.9 131.3 55 56 57* 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn 132.9 137.3 138.9 178.5 180.9 183.9 186.2 190.2 192.2 195.1 197.0 200.6 204.4 207.2 209.0 (209) (210) (222) 87 88 89** 104 105 106 107 108 109 110 111 Fr Ra Ac Rf Ha Sg Ns Ms Mu Uun Uun Uun	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
55 56 57* 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn 132.9 137.3 138.9 178.5 180.9 183.9 186.2 190.2 192.2 195.1 197.0 200.6 204.4 207.2 209.0 (209) (210) (222) 87 88 89** 104 105 106 107 108 109 110 111 Fr Ra Ac Rf Ha Sg Ns Hs Mt Uun Uun Uun Vun	Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	Ι	Xe
Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn 132.9 137.3 138.9 178.5 180.9 183.9 186.2 190.2 192.2 195.1 197.0 200.6 204.4 207.2 209.0 (209) (210) (222) 87 88 89** 104 105 106 107 108 109 110 111 Fr Ra Ac Rf Ha Sg Ns Hs Mt Uun Uun							(98)	101.1	102.9								126.9	
132.9 137.3 138.9 178.5 180.9 183.9 186.2 190.2 192.2 195.1 197.0 200.6 204.4 207.2 209.0 (209) (210) (222) 87 88 89** 104 105 106 107 108 109 110 111 Fr Ra Ac Rf Ha Sg Ns Hs Mt Uun Uun Uun	55	56	57*	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
87 88 89** 104 105 106 107 108 109 110 111 Fr Ra Ac Rf Ha Sg Ns Hs Mt Uun Uuu	Cs	Ba	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Ро	At	Rn
Fr Ra Ac Rf Ha Sg Ns Hs Mt Uun Uuu	132.9	137.3		178.5	180.9	183.9	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0	(209)	(210)	(222)
	87	88	89**	104	105	106	107	108	109	110	111							
	Fr	Ra	Ac	Rf	Ha	Sg	Ns	Hs	Mt	Uun	Uuu							
(223) 226.0 (227) (261) (262) (263) (262) (265) (266) (269) (272)	(223)	226.0	(227)	(261)	(262)	(263)	(262)	(265)	(266)	(269)	(272)							

Lanthanides *	58	59	60	61	62	63	64	65	66	67	68	69	70	71
L'anthamues	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
	140.1	140.9	144.2	(145)	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.0	175.0
Actinides **	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Actinucs	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	232.0	231.0	238.0	237.0	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)

PERIODIC TABLE