UNIVERSITY OF CALGARY

FACULTY OF SCIENCE

FINAL EXAMINATION

CHEMISTRY 353

April 16th, 2024

Time: 2 Hours

READ ALL THE INSTRUCTIONS CAREFULLY

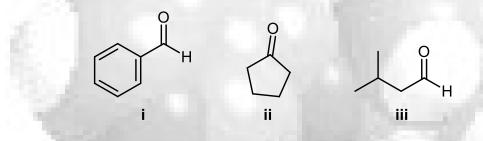
WRITE YOUR NAME, STUDENT I.D. NUMBER AND VERSION NUMBER 1 ON <u>BOTH</u> YOUR MULTIPLE CHOICE ANSWER SHEET AND WRITTEN ANSWER SHEET.

The exam consists of **Parts 1 - 8**, each of which should be attempted. Some Parts provide you with a choice of questions, *e.g.* answer any 5 out of 6. These will be graded in numerical order until the required number have been completed, regardless of whether they are right or wrong. **Parts 1 - 5** will be computer graded, and **Parts 6 - 8** are to be answered **IN THE APPROPRIATE BOX ON THE WRITTEN ANSWER SHEET PROVIDED**.

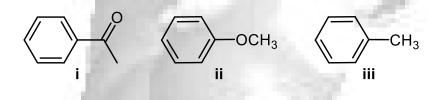
Parts 1 - 5 consist of a series of multiple choice questions numbered **1 - 34** to be answered on the multiple choice answer sheet. Indicate your answer by completely blackening out the appropriate space, A, B, C, D or E on the answer sheet. Use a soft pencil only, <u>not ink</u>. In some cases it is required that you indicate <u>multiple</u> items for a complete and/or correct answer by blackening out <u>more than one space</u>. In some other cases, more than five options are available and some of these also require more than one space to be blackened out. For an example, an option specified as AB requires that you blacken out <u>both</u> space A and space B. Part marks may be awarded in some of the questions. Incorrect answers must be <u>erased cleanly</u>.

A periodic table with atomic numbers and atomic weights and spectroscopic data tables and 2 pages of scrap paper for rough work are included with this examination paper.

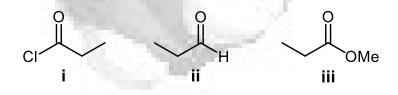
Molecular models are permitted during the exam; calculators are also permitted, <u>but NOT</u> <u>programmable calculators</u>. Absolutely no other electronic devices are allowed.


17.5% PART 1: RELATIVE PROPERTIES

ANSWER ANY SEVEN (7) OF THE EIGHT (8) QUESTIONS 1-8.

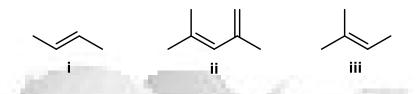

Arrange the items in questions 1-8 in DECREASING ORDER (*i.e.* greatest, most *etc. first*) with respect to the indicated property. Use the following code to indicate your answers in the box provided:

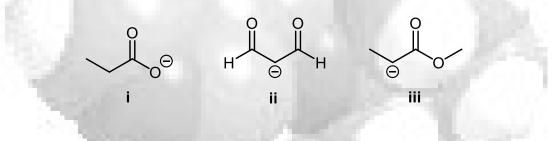
Α	i > ii > iii	D	ii > iii > i
В	i > iii > ii	E	iii > i > ii
С	ii > i > iii	AB	iii > ii > i


1. The number of enolisable protons in each of the following :

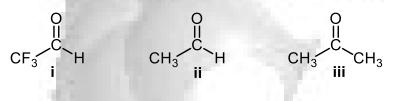
2. The relative rate of reaction of HNO₃ / H₂SO₄ with each of the following:

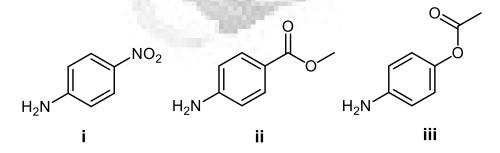
3. The relative reactivity of each of the following towards CH₃MgBr :


4. The relative acidity of the most acidic hydrogen in each of the following:

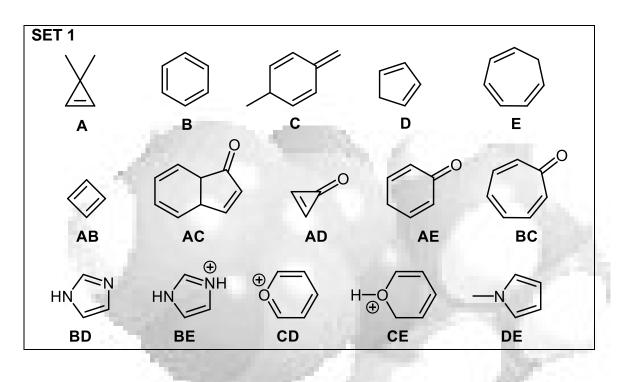


Α	i > ii > iii	D	ii > iii > i
В	i > iii > ii	Е	iii > i > ii
С	ii > i > iii	AB	iii > ii > i


5. The relative reactivity of each of the following towards HCI:


6. The relative basicity of each the following anions:

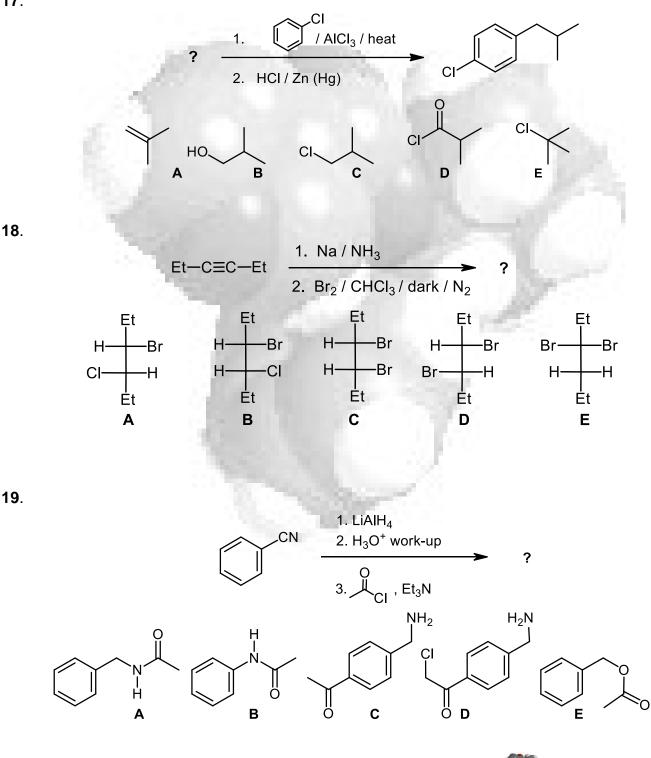
7. The equilibrium constant, *K*, for the formation of the hydrate produced when each of the following is dissolved in water:


8. The relative basicity of the following:

14% PART 2: AROMATICITY AND RESONANCE

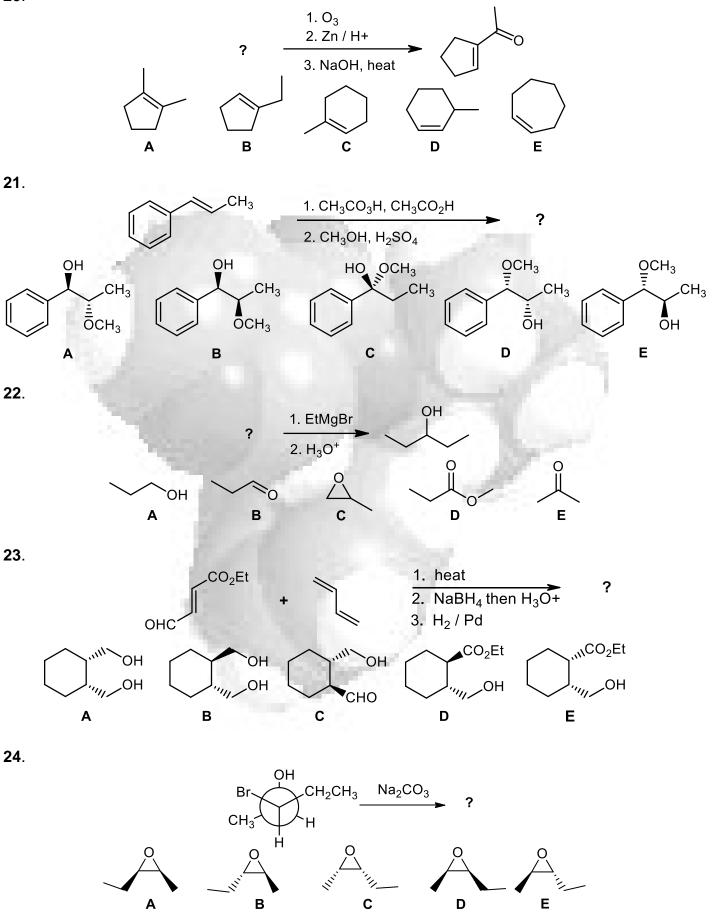
ANSWER ANY SEVEN (7) OF THE EIGHT (8) QUESTIONS 9 – 16 For each question, select a <u>SINGLE compound</u> from those shown below.

- **9.** A non-conjugated molecule
- Non-aromatic as drawn, but has an important aromatic resonance structure where n ≠ 1 when applying the Hückel rule.
- **11.** The structure that contains the most acidic proton.
- **12.** Non-aromatic as drawn, but becomes aromatic when deprotonated.
- **13.** A compound that has an aromatic tautomer.
- **14.** An anti-aromatic (assuming that it is planar) molecule.
- **15.** A neutral, aromatic heterocycle that become non-aromatic when protonated.
- 16. A non-aromatic hydrocarbon that would be anti-aromatic if deprotonated (assuming planarity).



17.5% PART 3: STARTING MATERIALS AND PRODUCTS OF SYNTHESIS

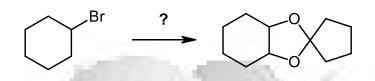
ANSWER ANY SEVEN (7) OF THE EIGHT (8) QUESTIONS 17 - 24.


For each of the questions 17 - 24 identify the product(s) obtained or starting material(s) required in order to best complete each of the reaction sequences shown by selecting from the list provided.

17.

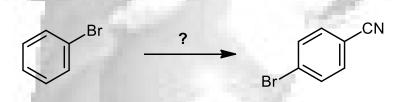
© Dept of Chemistry, University of Calgary

20.



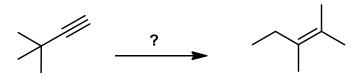
© Dept of Chemistry, University of Calgary

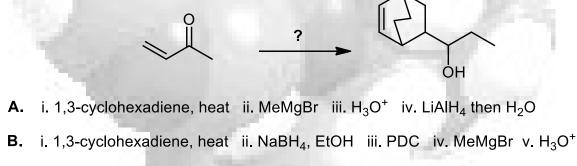
ANSWER ANY FOUR (4) OF THE FIVE (5) QUESTIONS 25 - 29


For each of the questions 25 - 29 identify the reagent(s) required in order to BEST complete each of the reaction sequences shown by selecting from the list provided.

25.

- A i. H₂SO₄, heat ii. KMnO₄, aq KOH, heat iii. 1,2-cyclopentanediol
- **B** i. NaOC(CH₃)₃, heat ii. CH₃CO₃H, CH₃CO₂H iii. cyclopentanone, TsOH
- **C** i. NaOEt, heat ii. KMnO₄, aq KOH, 0 °C iii. cyclopentanone, TsOH
- **D** i. NaOEt, heat ii. CH₃CO₃H, CH₃CO₂H iii. aq. H₂SO₄ iv. 1,2-cyclopentanediol, TsOH
- E i. H₂SO₄, heat ii. 1,2-cyclopentanediol, aq H₂SO₄, HgSO₄ iii. TsOH

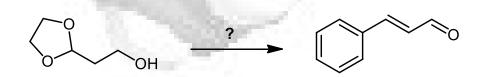

26.


- **A.** i. CH_3MgBr ii. H_2CrO_4 , H_2SO_4 , heat iii. $NaNH_2$ iv. $LiAIH_4$, then water
- B. i. HNO₃, H₂SO₄, heat ii. Sn, HCI iii. NaNO₂, HCI, cold iv. CuCN
- **C.** i. KCN, DMSO ii. Br₂, FeBr₃
- **D.** i. CuCN ii. Mg then H^+ iii. Br_2 , FeBr₃
- E. i. HNO₃, H₂SO₄, heat ii. NaNO₂, HCI, cold iii. KCN iv. Sn, HCI

27.

28.

- **A.** i. H_2 / Lindlar's catalyst, ii. CH_3CO_3H , iii. CH_3MgBr , iv. H_3O^+
- **B.** i. O_3 , ii. H_2O , iii. CH_3CH_2MgBr , iv. H_3O^+
- **C.** i. H_2 / Lindlar's cat. ii. BH₃, then aq. H_2O_2 / NaOH iii. PCC iv. MeMgBr then H⁺ workup
- **D.** i. HgSO₄, aq. H₂SO₄, ii. CH₃MgBr, iii. H₃O⁺
- **E.** i. BH₃, then aq. H_2O_2 / NaOH ii. $H_2C=P(Ph)_3$ iii. H⁺, heat



C. i. NaBH₄ ii. Na, CH_3I iii. 1,3-cyclohexadiene, heat

D. i. MeMgBr ii. H_3O^+ iii. cyclohexene, heat iv. PCC

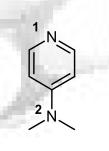
E. i. LDA ii. Me-Br iii. 1,3-cyclohexadiene, heat iv. NaBH₄

29.

- **A.** i. PCC ii. PhLi iii. H_3O^+ , heat
- **B.** i. aq. H_2SO_4 ii. PDC iii. PhMgBr iv. H_3O^+
- **C.** i. LiAlH₄ ii. H₂O iii. Na, PhBr iv. H₃O⁺
- **D.** i. PhMgBr ii. H_3O^+ iii. PCC iv. $HgSO_4$, H_2SO_4 , H_2O
- **E.** i. PDC ii. PhMgBr iii. H₃O⁺ iv. NaBH₄

10% PART 5: EXPLANATION OF PHENOMENA

ANSWER ALL FIVE (5) OF THE QUESTIONS 30-34.


Choose the single explanation that best rationalises the phenomenon indicated.

- **30**. The two pentadienes shown below are geometric (E/Z) isomers. One of them undergoes reaction with the anhydride shown significantly faster than the other. Which isomer is more reactive and why ?
 - X ____ Anhydride
 - A. X because it is the less stable isomer
 - B. X because steric effects destabilise its s-cis conformation
 - C. X because it has a more stable s-cis conformation
 - D. Y because it is the less stable isomer
 - E. Y because steric effects destabilise its s-cis conformation
 - AB. Y because it has a more stable s-cis conformation
- **31**. When the aromatic ester is reacted as shown (right), which of the following best describes the major product and why it is formed ?

AICI₃ / heat

- A. para because the ester group is electron donating directing ortho/para
- B. meta because the ester group is electron donating directing meta
- C. para because the ester group is electron withdrawing directing ortho/para
- D. meta because the ester group is electron withdrawing directing meta
- E. meta because the acyl group is electron withdrawing directing meta
- **AB**. *no reaction* because the ester group is too deactivating for the Friedel-Crafts to work

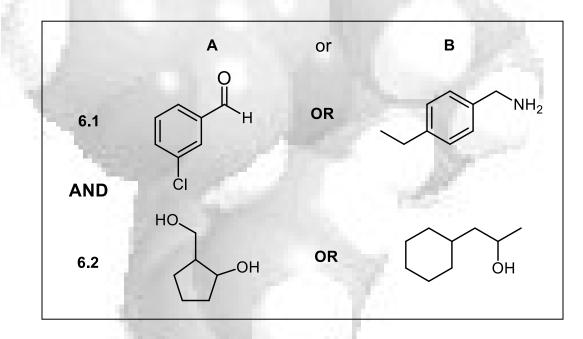
- **32**. What is the product of the reaction of butanoic acid with CH₃ONa / CH₃OH followed by work-up with aqueous acid ?
 - A. methyl butanoate because the carboxylic acid undergoes nucleophilic addition
 - B. methyl butanoate because the carboxylic acid undergoes nucleophilic acyl substitution
 - C. butyl methanoate because the carboxylic acid undergoes nucleophilic addition
 - D. butyl methanoate because the carboxylic acid undergoes nucleophilic acyl substitution
 - E. butanoic acid because the initial reaction forms a carboxylate that reprotonates
 - AB. pentan-2-one because the carboxylic acid undergoes nucleophilic acyl substitution
- **33**. Dimethylaminopyridine has two basic nitrogen atoms labeled as **1** and **2** (shown below). Which N atom is more basic and why ?
 - **A.** N1 because the N1 lone pair is in an sp² hybrid orbital
 - **B.** N1 because the N1 lone pair is in a p orbital
 - C. N1 because its conjugate acid is resonance stabilised
 - **D.** N2 because the N2 lone pair is in an sp³ hybrid orbital
 - E. N2 because its conjugate acid is resonance stabilised
 - AB. N2 because the N2 lone pair is in a p orbital

34. (E)-2,3-dibromobut-2-ene is the major product in the following reaction because:

$$CH_{3}-C\equiv C-CH_{3} \xrightarrow{1 \text{ equivalent } Br_{2}} dark \xrightarrow{CH_{3}} Br \\ H_{3}-C\equiv C-CH_{3} \xrightarrow{Br} CH_{3} \xrightarrow{Br} CH_{3}$$

- A. *Trans* double bonds are generally more stable than *cis*
- B. The stepwise reaction involves a vinyl cation
- **C.** The stepwise reaction involves a cyclic bromonium ion
- **D.** The stepwise reaction involves a vinyl radical
- E. The two bromine atoms add in a concerted manner
- **AB.** The reaction occurs in accord with Markovnikov's rule

10% PART 6: SYNTHESIS


WRITE YOUR ANSWER IN THE APPROPRIATE BOX ON THE WRITTEN ANSWER SHEET PROVIDED.

ANSWER TWO (2) QUESTIONS, ONE FROM EACH OF PART 6.1 AND PART 6.2

Design an efficient synthesis of TWO (2) of the following target molecules

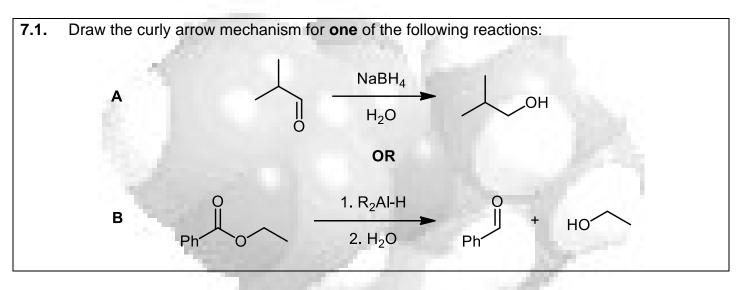
SHOW YOUR ANSWER AS A STEPWISE REACTION SCHEME SHOWING THE REAGENT REQUIRED AND PRODUCT OF EACH STEP

DO NOT SHOW MECHANISMS (i.e. curly arrows are NOT required)

Permitted Materials and Reagents

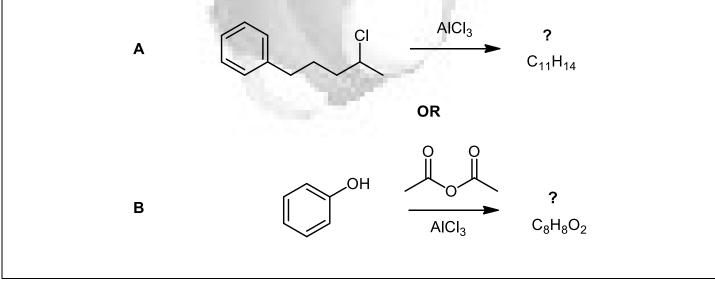
<u>NOTE:</u> any materials that contribute <u>carbon atoms</u> to the target molecule must come from this allowed list:

- any organic compounds with no more than FOUR carbons
- benzene
- cyclohexene
- you can use any solvents or other reagents for the reactions provided that they do not contribute carbon atoms to the target.



10% PART 7: MECHANISM

WRITE YOUR ANSWER IN THE APPROPRIATE BOX ON THE WRITTEN ANSWER SHEET PROVIDED


ANSWER TWO (2) QUESTIONS, ONE FROM EACH OF PART 7.1 AND PART 7.2

Draw curly arrow mechanisms to explain the following reactions / observations. No other reagents are required.

AND

7.2. Predict the product and provide the curly arrow mechanism for **one** of the following reactions:

13% PART 8: STRUCTURE DETERMINATION

WRITE YOUR ANSWERS IN THE APPROPRIATE BOXES ON THE WRITTEN ANSWER SHEET PROVIDED

Use the information in the following paragraph to answer the questions below.

An unknown compound **A** was heated with **B** (C₄H₇OCI) and AlCl₃ to give compound **C** as the major product (IR : approx. 1685 cm⁻¹).

When **C** was then reacted with CH_3CO_3H , two isomeric products were isolated in about 2:1 ratio where **D** was the major isomer.

When **D** was subsequently reacted with LiAlH₄ / THF followed by an aqueous acid work up, extraction with Et₂O and then removal of the volatile components on a rotary evaporator, the major product obtained was **E** (mass spec : M+ = 122, 13C NMR / ppm = 6 peaks total with 4 peaks 140-125 range, and 65, 21. IR : broad 3370 cm⁻¹). When **E** was heated with acidic aq. KMnO₄ it gave **F** (C₈H₆O₄, H-NMR / ppm = 12.0 (1H broad singlet, D₂O exchangeable); 8.1 (2H singlet)) as the major product.

- (12%) Identify the compounds A to F (drawn structures are sufficient).
- (1%) Give the IUPAC name for **B**.

THE END

PERIODIC TABLE

1																	18
1A	_																8A
1 H	2											13	14	15	16	17	2 He
1.008	2A											3A	4A	5A	6A	7A	4.003
3	4											5	6	7	8	9	10
Li	Be						a selle		1.1			В	С	Ν	0	F	Ne
6.941	9.012			- 200					Sec. 1	1.00		10.81	12.01	14.01	16.00	19.00	20.18
11	12		1.1	120		_	•		10			13	14	15	16	17	18
Na	Mg	3	4	5	6	7	8	9	10	11	12	Al	Si	Р	S	Cl	Ar
22.99	24.31			_								26.98	28.09	30.97	32.07	35.45	39.95
19	20	21	22	23	24	25	26	27	28	-29	= 30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.38	69.72	72.59	74.92	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	Ι	Xe
85.47	87.62	88.91	91.22	92.91	95.94	(98)	101.1	102.9	106.4	107.9	112.4	114.8	118.7	121.8	127.6	126.9	131.3
55	56	57*	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Ро	At	Rn
132.9	137.3	138.9	178.5	180.9	183.9	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0	(209)	(210)	(222)
87	88	89**	104	105	106	107	108	109	110	111			1.00				
Fr	Ra	Ac	Rf	На	Sg	Ns	Hs	Mt	Uun	Uuu							
(223)	226.0	(227)	(261)	(262)	(263)	(262)	(265)	(266)	(269)	(272)		1.14	88° -				
	Lont	hanic		58	59	60	61	62	63	64	65	66	67	68	69	70	71
	Laill	nam	162 .	Ca	D.,	NJ	Dm	Sm	E.	Ca	Th	Dr	IIa	E.	Tm	Vh	т.,

Gd

157.3

96

Cm

(247)

Tb

158.9

97

Bk

(247)

Dy

162.5

98

Cf

(251)

Ho

164.9

99

Es

(252

Er

167.3

100

Fm

(257)

Tm

168.9

101

Md

(258)

Yb

173.0

102

No

(259)

Lu

175.0

103

Lr

(260)

Lanthanides	2

Actinides **

Ce

140.1

90

Th

232.0

Pr

140.9

91

Pa

231.0

Nd

144.2

92

U

238.0

Pm

(145)

93

Np

237.0

Sm

150.4

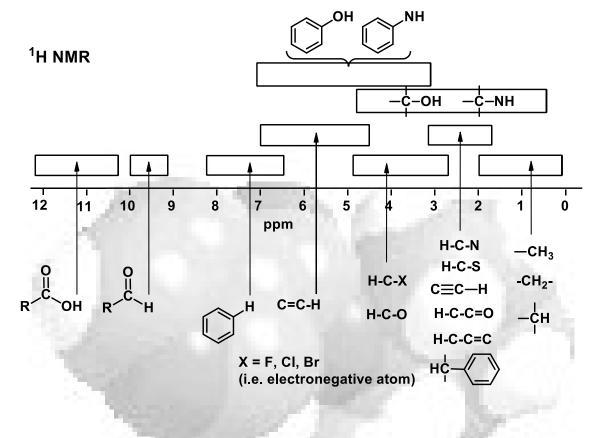
94

Pu

(244)

Eu

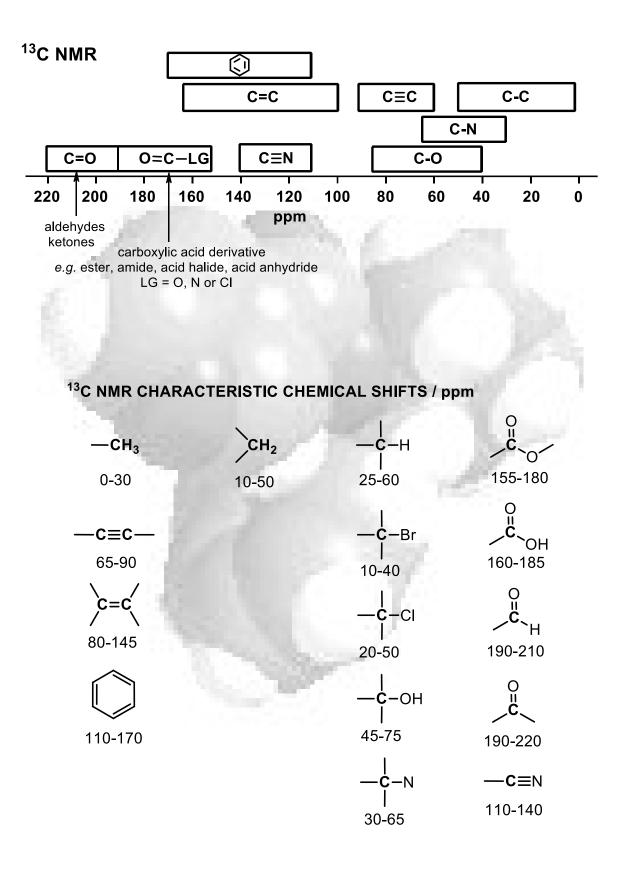
152.0


95

Am

(243)

/	G


SPECTROSCOPIC TABLES

¹H NMR CHARACTERISTIC CHEMICAL SHIFTS / ppm

R =	methyl	methylene	methyne		
	−CH ₃	-CH ₂ -	-ċh	other	•
R-C-	0.9	1.4	1.5	sp ³ C -OH	1-5
R /				sp ³ C -NH	1-3
)c=c	1.6	2.3	2.6	с≡сн	2.5
	2.1	2.4	2.5	C=C	4.5-6.5
	2.2	2.5	2.9	н-{	6.5-8
R-	2.3	2.7	3.0	0 " R ^{/C} _H	9-10
R–Br	2.7	3.3	4.1	o Q	
R–Cl	3.1	3.4	4.1	^{сс} _он	9-12
R-0—	3.3	3.4	3.7		

INFRA-RED GROUP ABSORPTION FREQUENCIES

	<u>TY</u>	PE OF VIBRATION	FREQUENCY (cm ⁻¹)	WAVELENGTH (µ)	INTENSITY (1)
C–H	Alkanes	(stretch)	3000-2850	3.33-3.51	S
	–CH ₃	(bend)	1450 and 1375	6.90 and 7.27	m
	-CH ₂ -	(bend)	1465	6.83	m
	Alkenes	(stretch)	3100-3000	3.23-3.33	m
		(bend)	1700-1000	5.88-10.0	S
	Aromatics	(stretch)	3150-3050	3.17-3.28	S
		(out-of-plane bend)	1000-700	10.0-14.3	S
	Alkyne	(stretch)	ca. 3300	ca.3.03	S
	Aldehyde		2900-2800	3.45-3.57	W
			2800-2700	3.57-3.70	W
C–C	Alkane	not usually useful		St. 45	
C=C	Alkene	100	1680-1600	5.95-6.25	m-w
	Aromatic		1600-1400	6.25-7.14	m-w
C≡C	Alkyne		2250-2100	4.44-4.76	m-w
C=O	Aldehyde		1740-1720	5.75-5.81	S
	Ketone		1725-1705	5.80-5.87	S
	Carboxylic acid		1725-1700	5.80-5.88	S
	Ester		1750-1730	5.71-5.78	S
	Amide		1700-1640	5.88-6.10	S
	Anhydride	1000	ca. 1810	ca. 5.52	S
		1.1.1	ca. 1760	ca. 5.68	S
	Acyl chloride		1800	5.55	s
C-0	Alcohols, Ether	s, Esters,			100
	Carboxylic acid	S	1300-1000	7.69-10.0	S
O-H	Alcohols, Phene	ols			
	Free		3650-3600	2.74-2.78	m
	H-Bonded		3400-3200	2.94-3.12	m
	Carboxylic acid	s (2)	3300-2500	3.03-4.00	m
N–H	Primary and se	condary amines	ca. 3500	ca. 2.86	m
C≡N	Nitriles		2260-2240	4.42-4.46	m
N=O	Nitro (R–NO ₂)		1600-1500	6.25-6.67	S
	_		1400-1300	7.14-7.69	S
C–X	Fluoride		1400-1000	7.14-10.0	S
	Chloride		800-600	12.5-16.7	S
	Bromide, Iodide	9	<600	>16.7	S

(1) s = strong, m = medium and w = weak

(2) note that the -OH absorption of solid carboxylic acids run as a nujol mull can be difficult to see as they may be very broad.

SCRAP PAPER

SCRAP PAPER

SCRAP PAPER

